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Abstract

Local image features have been designed to be informative and repeatable under rigid trans-

formations and illumination deformations. Even though current state-of-the-art local image features

present a high degree of repeatability, their local appearance alone usually does not bring enough

discriminative power to support a reliable matching, resulting in a relatively high number of mismatches

in the correspondence set formed during the data association procedure. As a result, geometric filters,

commonly based on global spatial configuration, have been used to reduce this number of mismatches.

However, this approach presents a trade off between the effectiveness to reject mismatches and the

robustness to non-rigid deformations. In this paper, we propose two geometric filters, based on semi-

local spatial configuration of local features, that are designed to be robust to non-rigid deformations

and to rigid transformations, without compromising its efficacy to reject mismatches. We compare our

methods to the Hough transform, which is an efficient and effective mismatch rejection step based on

global spatial configuration of features. In these comparisons, our methods are shown to be more effective

in the task of rejecting mismatches for rigid transformations and non-rigid deformations at comparable

time complexity figures. Finally, we demonstrate how to integrate these methods in a probabilistic

recognition system such that the final verification step uses not only the similarity between features, but

also their semi-local configuration.

Index Terms

Local image feature, Feature clustering, Visual object recognition, Wide baseline matching, Long

range matching.

I. INTRODUCTION

The field of computer vision has experienced an increasing interest in the use of local

image features for the tasks of object recognition [25], image matching [33], object discovery

and recognition [38], etc. When compared to image representations based on a large spatial

support [29], local feature representations (based on a small spatial support) trade a poorer

distinctiveness for a better robustness to brightness deformations and rigid transformations.

Therefore, the search for similar features between the local features extracted from a test image

and the features in the model database typically returns a correspondence set with high percentage

of mismatches. The rejection of mismatches from this correspondence set is therefore one of the

central issues in local feature based methods for recognition.
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The rejection of mismatches is typically based on the spatial configuration of the model

features. The global spatial configuration (e.g., [16], [23], [25], [32], [39], [43]) assumes that all

model features suffered a rigid transformation. Usually, the more strict this assumption of global

transform is, the more effective the method is to reject mismatches. As this assumption is relaxed,

the method becomes more robust to non-rigid deformations, but allows more mismatches in the

correspondence set. A more flexible scheme was introduced by Berg et al. [5], which alleviates

this problem by allowing some flexibility to the initial rigid model through the use of thin plate

splines, but the trade off mentioned above is still present. A method specifically designed to be

robust to non-rigid deformations was presented by Ferrari et al. [17], where the authors propose an

algorithm consisting of several steps of expansion and contraction of the correspondence set that

slowly rejects mismatches and increases the number of correct correspondences. The main issue

with the latter method is the high computational complexity of the whole algorithm. A method

for real-time tracking of non-rigid surfaces is proposed by Pilet et al. [30], where the method

is based on deformable 2-D meshes and the use of robust estimators. This systems produces

impressive non-rigid matching results at relatively high frame rates (10 frames per second), but

the main problem with the method is the difficulty in matching highly deformable objects because

of issues involved in the minimization of the surface energy term. Here, we propose two efficient

methods to reject mismatches that are designed to be robust to non-rigid deformations, but for

which the rejection of mismatches from the correspondence set is less affected. Specifically, the

following methods are considered: a) introduction of an intermediate grouping step using pairwise

geometric relations [9], and b) improvement of the distinctiveness of the local feature using semi-

local geometric information [10]. We also propose a novel probabilistic verification method

based on feature similarity and semi-local geometric relations. This verification method can be

combined with either mismatch rejection methods (a) or (b) above to increase the proportion of

correct matches in the correspondence set and also to verify the correctness of the semi-local

geometric configuration of the features.

We present a comparison between both mismatch rejection methods and Hough clustering,

which is a common method to reject mismatches based on global spatial configuration. The results

show that both methods lead to correspondence sets with a higher proportion of correct matches

than Hough clustering for both rigid transformations and non-rigid deformations. We also show

that our methods present a comparable time complexity when compared to Hough clustering
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for typical image matching tasks. The probabilistic verification method that uses semi-local

geometric relations is shown to increase the ratio of correct matches in the final correspondence

set without increasing the total time complexity for rejecting mismatches. Finally, we show how

these methods can be combined in a recognition system, where we show results on wide baseline

stereo and long range matching problems.

II. LITERATURE REVIEW

Systems that exploit pairwise relations to reject mismatches can be traced back to [3], [7],

[24]. In [27], [45] pairwise relations were used to disambiguate matches, but both papers rely

on a verification stage that is based on a global transformation, which is not suitable to handle

non-rigid deformations. Yu et al. [44] exploit pairwise relations of parts, but compared to our

approach, their method can work with five to ten parts only, while our method can handle

hundreds of parts. The use of graphs is exploited by Dickinson et al. [14], [36], [37], where

objects are represented as a hierarchical graph and the matching process takes into account

the graph structure, the (semi-)local features, and their global spatial arrangements. Huet and

Hancock [22] introduce an approach where the features are based only on pairwise geometric

relations between lines in a structural representation of objects, and impressive recognition results

are obtained, showing that pairwise relations alone can represent a powerful indexing feature.

Even though the use of pairwise relations are generally associated with mismatch rejection

methods, they can also be exploited in the verification stage, as implemented by Agarwal and

Roth [1].

The use of semi-local information to enhance the discriminating power of local features has

also been exploited in the literature. The most relevant work for our approach was presented by

Schmid and Mohr [34], [35], where a fixed number of local features around a given feature is used

to determine its semi-local structure. Also, a similar method to ours has been recently proposed

by Mortensen et al. [28]. A slightly different approach to eliminate mismatches is proposed by

Schaffalitzky and Zisserman [33], where a neighborhood consensus, formed by a fixed number of

features, is imposed to reject mismatches. Semi-local constraints are also used by Tuytelaars and

Van Gool [42] where an iterative method rejects mismatches based on homographies between

matches of semi-local features. Tell and Carlsson [40] introduce a semi-local feature formed

by a group of ordered local features which improves the discriminating power of the feature,
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but even though an optimal algorithm is used to avoid all possible combinations of neighboring

local features, the method is still prohibitively complex. Parts and union of parts are exploited

by Huang et al. [12], where parts are described as polynomial surfaces. This approach represents

both semi-local and global features since the union of parts can represent the whole object, but

articulated objects are not handled properly given that the relations are assumed to be fixed

between parts. The use of pairwise relations to form a feature vector is also successfully used by

Belongie et al. [4], where the authors propose the semi-local feature shape context. The method

proposed by Amit and Geman [2] learns groups of a fixed number of local features (thus forming

semi-local features) for recognition. Finally, Chum et al. [13] show that the use of three point

correspondences (or regions) within a RANSAC loop to estimate the F matrix speeds up the

estimation of the epipolar geometry and allows for a higher robustness to mismatches.

The novelty of our approaches lies in the use of semi-local configuration of features for

rejecting mismatches and verifying hypotheses, which means that we never rely on the global

configuration of local features. Both mismatch rejection methods proposed here build the semi-

local configuration using all of the image features (as opposed to a fixed number of fea-

tures) in a tunable neighborhood (the size of this neighborhood is a user-defined parameter).

Moreover, the feature and semi-local similarity functions are combined in the verification step

using probabilistic measures, thus avoiding the hard task of determining a reasonable similarity

function involving these rather distinct similarity functions. Also, our methods are capable of

handling correspondence sets containing thousands of pairings efficiently. Finally, similarly to

[45], our approach weights the importance of a semi-local geometrical correspondence by its

scale-invariant pairwise distance, meaning that nearby features are more likely to preserve such

similarities than far away features.

III. LOCAL IMAGE FEATURES

A local feature is represented by a geometric characterization of an image region plus a

descriptor of the image function (photometry) of this region. More specifically, a local feature

vector is described as
����� �����
	����	�����	�����	�����

, where
���

is the model identification,
���

is the

spatial position of the feature,
���

represents the dominant orientation at position
���

,
���

denotes

the feature scale, and
���

is the vector with the photometric values. The database of model features

extracted from a model image ��� is then denoted as ��� � �! ��"� 	�#%$�&'�)(��*�,+ ��.-0/  
�1� 	�#%$�&32 ,
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where
#%$ � ��������

, with � �
	 	����� 	�� �
representing the set of scales at which the image ��� was

processed, and the set of interest points
/  
��� 	�#%$�& is defined as the set of positions in image ���

selected at each scale in
# $

as interest points. Specifically, in this work we study the local phase

feature [8] and the SIFT feature [25]. The local phase feature is computed from the responses of

the second derivative of a Gaussian and its Hilbert transform [19], which form a local complex

representation that can be denoted by amplitude and phase. The interest points for the local phase

feature are based on the multi-scale Harris corner points [20], where the points presenting phase

singularities [18] are filtered out [8]. The SIFT features [25] are computed using histograms of

gradient values at several scales, and the interest points are locations at maxima and minima of

a difference of Gaussian (DOG) function applied in scale space. Note that other types of local

image features containing appearance and geometric information could also have been used in

this work.

A. Correspondence Set

A correspondence set represents a data association between the set of model features � � and

a set of features ��� extracted from test image ��� . This set is denoted by

� ��� � (  �*��	����� &�+����� - ��� 	��*� -��  ���� 	 ��� 	���� &1	� "!  �*��	#���� &%$'&�(�2 	
(1)

where the similarity function
 �!  � & - �)	 	�� �

represents the similarity between two features (
 �!  � &+*�

means high similarity), and
�  � & is the set of the top

�,�
correspondences between test image

feature
���� - ��� and the database of model features � � in terms of the similarity function.

IV. METHODS TO REJECT MISMATCHES

In this section we present our methods to reject mismatches from a correspondence set, where

the key idea exploited is the use of semi-local constraints. In Sec. IV-A we describe the grouping

method based on pairwise relations between local image features and in Sec. IV-B we introduce

our semi-local image feature.

A. Grouping Based on Pairwise Relations

One way of rejecting mismatches from the correspondence set is through a grouping stage.

Typical grouping approaches for local features (e.g., Hough transform [25], or RANSAC [41])
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rely on the global spatial configuration of features. Generally, these methods have become popular

due to their efficiency and reasonably good performance for rejecting mismatches. However, a

common property present in these approaches is the trade-off between the efficacy to reject

mismatches and robustness to large deviations from the chosen class of transformations. Since

the class of transformations is usually globally rigid (e.g., similarity, affine), any type of non-

rigid deformation would cause these methods to reject correct matches, and to break large sets

of appropriate matches up into several small-sized groups.

We propose a new grouping approach that aims at fixing these problems with a time complexity

comparable to the methods based on global spatial configuration. Specifically, our grouping

algorithm is designed to be robust to a broader class of deformations, which aims at reducing

the number of groups, where each group has a higher percentage of correct matches and a higher

number of correspondences. Our approach involves connected component analysis on an affinity

matrix based on the pairwise relations.

1) Pairwise Relations: The pairwise geometric relations are composed of the following three

measures between pairs of model features
� �
	��*$ - � � :

scale distance heading�  �*�
	��*$�& � ���������
	�� ����
� � �	 �  �*��	��*$�& � ����������	�� ������ � �	 �  �*��	��*$�& �����  ��� �"! � $3& (2)

where
�$#

is the scale of image feature
�%#

,
�&#

is the image position of
�'#

,
�(�  � &%-  �*) 	,+-) � denotes

the principal angle,
�.#

is the main orientation of feature
�%#

for � �0/,	�1
, and

! � $%�32�465 �$7  ���� �$�& .
The heading measurement considers the main orientation

� �
of feature vector

�,�
relative to the

displacement between
���

and
�$

.

We can build the same pairwise relations between test image features
���� 	 ��98 - ��� such that

 � �
	����� &1	  �*$"	#��981& - � � � ( 1), thus forming
�  ���� 	���98"& , �  ���� 	���:81& , and �  ���� 	#��98"& . The pairwise semi-local

spatial similarity is then based on

scale
����� $  � � � & �3�  �*� 	��*$�&;�"�  ���� 	#��98"&

distance
� � � $  � � � & � �  �*��	��*$�&;� �  ���� 	 ��98"&

heading
� � � $  � ��� & � �  �*�
	��*$�&;� �  �����	#��981&

(3)

We define the similarity weight of the connection between
����

,
��98 - � � in the test image based

on the connection of their respective correspondences in the model
����	��*$ - ��� , as follows:

<  /,	�1 & �>= � � � 	 ) � $�? @�A � �B� � � $  � � � &3	�� � � $  � � � &3	��C��� $  � � � &,�EDGF,HJI � 	
(4)
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where
�!�

is the model index of feature
�,�

matched to deformed feature
����

and similarly for��$
, and

= � � ? � 	 � �
if
����� ��$

and
	

otherwise. Also, the pairwise weight
) � $�? @

is defined as) � $�? @ ��� ����� ��� �
	�� �� � 	��� ��  � where
��� ? @ � ����������  , with

!#"%$�&�'
being a tuning variable, and (*) the maximum

model diameter in pixels. Finally,
A  � & is the zero-mean unnormalized Gaussian function defined

as
A  � F�H & �+� �-,/.103254�,76�8

, where the covariance matrix
H I

is a 9;:<9 diagonal matrix with

distance, scale, and heading variances, namely
� 8= , � 8> , and

� 8(
, respectively, such that

� 8> , � 8(
are pre-defined constants, and

� 8= �@?*A 5  � =CB ( � 	�? 4ED  GF =CB ( � �  �*� 	��*$�&1	 	 ����&�& depends on the scaled

original distance between model features
� � 	��*$ - � � (i.e., points that are far from each other in

the model have a proportionally larger standard error for their relative distances).

2) Grouping Algorithm: Given the correspondences
� � � (1) between the database of model

features � � and the set of test image features � � , we proceed as follows:

1) Build the affinity matrix based on the pairwise similarity measures H  /,	�1 & (see Eq. 4 and

Step 1 in Fig. 1).

2) Perform a Connected Component Analysis (CCA). The strategy here is to select a weak

threshold
&

CCA and connect every pair of points
/

and
1

for which
<  /,	�1 &JI &

CCA, thus

forming K connected clusters represented by the sub-matrix
< @

. We have then the sub-

group of correspondences L @  � ��� &NM � ��� composed of the features grouped in
< @

. Note

that a specific cluster of correspondences can only belong to a single model � � due to

the term
= � � ? � 	 in Eq. 4 (see Step 2 in Fig. 1).

The complexity of this grouping algorithm is O  + � ��� + 8 & , where
+ � ��� + denotes the size of the

correspondence set. Thus a good strategy to keep the complexity of this algorithm manageable

is to set
&�(

at a high value and
� �

at a low value in (1), so that
+ � ��� + is reasonably small.

B. Semi-local Image Features

An intuitive method to improve the disambiguating power of local features is to group them in

some pre-defined manner, and use these groups as indexes to the model database [14]. Although

several cues for clustering visual features have been proposed in [6], [24], we only exploit local

feature proximity in this work. More specifically, we propose a method to verify the correctness

of a given correspondence using a variation of the shape context descriptor [4].

1) Variation of Shape Context: The shape context feature proposed in [4] is based on a log-

polar space histogram as shown in Fig. 2. Although shown to be useful in some recognition
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Fig. 2. Shape context of local feature � 4 . As in [4], we also use 5 bins for log(distance) and 12 bins for relative orientation.

Note that we modify the original shape context method as explained in Sec. IV-B.1.

tasks, this image feature presents a few weaknesses in terms of robustness that needed to be

addressed in order to improve the discriminating power of typical local features. Assuming that

we are augmenting the feature
� �

, and that
�*$

is a neighboring feature, the modifications made

to the original shape context are:

1) the robustness to non-rigid deformations is improved by weighting a vote in a specific

histogram bin by
�  �*� 	��*$�& � � 2	��
 � � � 	 � �  � 	 � � 	

(5)

where �  �,� 	��*$3& is defined in (2), and
! � � ��

sc
, with

!
sc being a tuning variable, and (*)

the maximum model diameter in pixels (in Fig. 2, darker cells in the histogram represent

higher weight);
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2) in order to reduce boundary effects in the histogram, each neighboring feature votes for

the two closest bins in each dimension (see in Fig. 2 that each vote spans four bins);

3) we make the shape context robust to rotation changes by rotating the histogram axis

according to the main orientation of the feature; and

4) the distance measures are scaled as in (2) in order to make them robust to scale changes.

The shape context similarity is computed using the
� 8  ��� �*� &3	 �� �����&�& test statistic defined in

[4], as follows

 >  ��� �*� &1	 �  ���� &�& � �*� � 8  ��� � � &3	 �� �����&�& � �*� ��
�� #�� 7

� � #  �*� &;� � #  ���� &,� 8
� #  �*� & + � #  ���� &

- ��	 	�� � 	
(6)

where �� �*� & and �� ���� & are the � �
	���
normalized histograms of features

� �
and

����
, respectively.

Therefore, given an initial set of correspondences
� � � (1) built using a feature similarity function "!  � & , we select the features belonging to a common model that also have shape context similarity

above some value
&��

. This forms K groups L @  � � � & � (  �*��	#���� &�+  �*��	#���� & - � � � 	� >  ��� �*� &3	 �� ���� &�& $&���2
, where �. �*�
	 ���� &1	  �*$"	 ��981& - L @  � ��� & , ��� � ��$

(i.e., feature correspondences belonging to the

same group L @  � ��� & must belong to the same model). Hence, ���@�� 7 L @  � � � &NM � � � . Note that

this system is able to detect only one instance per model stored in the database, so the maximum

number of groups formed equals the number of models stored in the database.

The performance improvement of this new semi-local feature is assessed using the quantitative

evaluation described in the Appendix I. For these comparisons, we use the local phase features

where the similarity function is denoted by (see [8] for details):

 !  �*��	 ���� & �
+ � ��� ����� +� + + ��,+ + �� � + 	 (7)

where
�&#

is a complex-valued vector,
���#

represents its complex conjugate for � � /,	��
, and

�
denotes dot product. We also use SIFT [25], where the similarity function is

 !  �*��	#���� & � 7��,�� ���,�� � .
Finally,

!��! � �"	�	
in (5).

We generate the ROC curves by varying the feature similarity threshold
& (

and then evaluating

true positive (TP) and false positive (FP) using the threshold values
&"� - (�	 	��$#&% 	��(')% 	��+* 	��+, 2

for

the shape context similarity function such that
 >  ��� � � &3	 �� ���� &�& $'&��

(see Eq. 6). Notice that when&�� � 	
, we are not using the shape context.

Fig. 3 shows the TP rates for a FP rate of
	 ���"-

for the image deformations . - �0/ described

in the Appendix II. Note that the size of the error bars in the graphs is large due to a combination
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Fig. 3. The TP rate curves in terms of the image deformations ������� are obtained by holding the FP rate at �	� ��
 in the

ROC curves generated by the evaluation experiment in Appendix I. Black curves are the phase local feature [8] without shape

context (solid), with shape context such that ������	� � � (dashed), and ������	� � (dotted). Gray curve shows the performance of

SIFT [25] without shape context (solid), with shape context such that �  ���	� � � (dashed), and �  ���	� � (dotted). Note that the

error bars are omitted for the dashed and dotted curves for clarity, but are roughly the same size as the ones we show.

of two things: a) small number of descriptors present in some of the test images (especially for

the SIFT descriptor), and b) large number of cases where the TP rate is zero for an FP rate =	 ���"-
. The correct matches and mismatches that are rejected from the correspondence set as&��

increases (with FP=
	 �� -

) are shown in Fig. 4. The correct match rejection is computed as����� � �%� � ����� ���  ������ � �%� , where � B��  &�� & is the number of correct matches (see computation of TP rate above)

for a given
& �

, while the mismatches rejection is calculated as
� �� 	  � �%� � ����� � �%�E���$� �� 	  ���  ��� ����� ���  �E�� �  	  � �%� � ����� � �%�E� ,

where � � $ �� &�� & is the total number of features in the correspondence set for a given
&"�

. From

these curves it is clear that the use of shape context rejects many mismatches while keeping most

of the correct matches in the correspondence set. It is interesting to notice in Figures 3 and 4

that the use of shape context is more effective to remove mismatches in correspondences set of

SIFT features than in sets of local phase features. A possible reason for this is the combination

of a relatively smaller number of SIFT features detected in an image and the robustness of the

interest point detector DOG to the image deformations studied. It can also be seen in Fig. 3

that the local phase feature alone performs better than SIFT. This happens not only because the

local phase information is robust to geometric transformations and brightness variations [18],
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Fig. 4. Correct match and mismatch rejection ratios for our local phase feature and SIFT [25] using shape context to reject

mismatches.

but also because the relatively higher number of local phase descriptors per image (compared

to the number of SIFT descriptors) increases the chances of a successful match in the deformed

test image.

Similarly to the pairwise clustering, the time complexity to build the semi-local feature is

O  + � � � + 8 & , where
+ � � � + denotes the size of the correspondence set. Again, a good strategy to

keep the complexity of this algorithm manageable is to set
&�(

at a relatively high value and
� �

at a low value in (1), so that
+ � � � + is reasonably low.

C. Performance Evaluation

A comparison between our mismatch rejection methods described above and the generalized

Hough transform is provided next. The reason for comparing our methods against the Hough

transform resides in its attractive properties, which include: a) low time complexity, b) reasonably

high accuracy, and c) wide availability and acceptance. We intend to show that our methods prune

the initial correspondence set more accurately than the Hough transform, generating groups with

a higher rate of correct matches not only in terms of non-rigid, but also rigid transformations.

We also illustrate that the efficiency of our method is comparable to the one presented by the

Hough transform for typical matching problems.

In the experiments below, we used the phase-based local feature for the model representation

with the feature similarity defined by (7). For the pairwise clustering scheme, we assumed the

following values for the constants in (4): the standard deviation of heading, scale, and distance

are respectively
� 8> � 	 � �

,
� 8( � 	 � �

,
� 8= � ? A�5  � dist

	 ? 4ED  F dist �  �*��	��*$�&1	 	 ���&�& with
�

dist
� �

and

F dist
� 	 � �

, and
! "%$�&�' � %

for the computation of pairwise weight (4). In order to generate the
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graphs below, we vary the parameter
&

CCA
� ��� �"	 for � � ( � 	 � 	�� � � 	�, 2

, which is the threshold

for the connected component analysis algorithm described in Sec. IV-A. For the semi-local

feature, the parameter
!

sc
� ��	�	

is used in the computation of (5). We vary the threshold for

shape context similarity between corresponding features in order to generate the graphs using&�� � ��� �"	 for � � (�� 	�� �(% 	�% 	����� 	�, 2
. Therefore, this mismatch rejection method discards any

correspondence  �,�
	����� & - � � that
 >  ��� � � &3	 �� ���� &�&��'&��

(see Eq. 6).

The Hough clustering algorithm builds a transform space (e.g., similarity, affine) and using

each element of
� ��� in (1) as a point in this space, it finds groups of points that move coherently

according to the transformation being modeled. For the experiments in this section, we use a

space of similarity transform in the Hough clustering algorithm with the following bin sizes

for translation:
(�	 � 9 	 	 ���"% 	 	 � 	&% 2 times ( ) (i.e., the maximum model diameter). For rotation,

the bin sizes studied are
( 9 	 $ 	��"% $ 	 % $ 2 . The bin sizes above are varied in order to produce the

results for the experiments in the next section. We did not vary the scale bin sizes since the

examples considered do not present much variability in terms of scale. Instead, the histogram

for scale changes has the following fixed bin values:
��	 ��� � % 	 	 � � % 	 	 �$% 	�� 	 � 	�� 	�* 	�� # �

. Finally, each

hypothesis is hashed into the two closest bins in each dimension in order to reduce boundary

effects. Also, in order to avoid a high number of groups we run a non-maximum suppression

when searching for local maxima in this space. Note that the complexity of Hough transform is

simply the number of bins in this transformation space.

1) Rigid Transformation: In order to show the effectiveness of our approaches with respect to

rigid transformation, we consider the wide baseline matching problem. Using the set provided by

each mismatch rejection method, we compute the � matrix as presented in [21] using RANSAC

[41]. We are interested in computing the proportion of inliers given the size of this set. An inlier

is considered to be a feature that lies within four pixels (approximately the spatial resolution of

the local features used) of the epipolar lines computed from the � matrix. For this experiment, we

used two sequences available from Oxford’s Visual Geometry Group’s webpage, namely Wadham

and Merton College sequences (see Figures 19 and 20). In Fig. 5, we present the graphs of each

matching. Note that the proportion of inliers for correspondences set of the same size is, for

the cases studied, always higher for our methods than for Hough. These results show that for

correspondence sets containing on the order of
� 	 	�	�	

matches there are around
, 	&-

to
,&% -

of

inliers. This means that point prediction estimates might be affected by the remaining
% -

to
�"	&-
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Fig. 5. Quantitative comparisons between our mismatch rejection methods and Hough transform for rigid transformations.

The comparisons show the proportion of correct matches from the correspondence sets of varying size provided by each of the

mismatch rejection methods.
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Fig. 6. Quantitative comparisons that show the proportion of correct matches as a function of the percentage of inliers present

in the initial correspondence set built from feature similarity search.

mismatches. In Section V we propose a method to eliminate the remaining mismatches. Fig. 6

shows the robustness of each mismatch rejection method to high percentages of mismatches

present in the initial correspondence set (the variation of the correspondence set size is obtained

by varying the threshold in Eq. 1). Notice that the semi-local feature presents the best robustness

since its performance is relatively stable even with the presence of high percentage of mismatches,

while both the pairwise clustering and Hough start to present an unstable behavior when the

initial proportion of correct matches falls below
�"% -

.

For the experiments in this section, the number of operations carried out by the pairwise

grouping and the semi-local feature algorithms is about
��	��

, which is proportional to
+ � � � + 8 .

Moreover, the number of operations of the Hough transform varies between
�"	 �

and
�"	��

,

depending on the number of bins used in the transformation space.
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Pairwise Clustering Semi-local Feature Hough Transform

Fig. 7. Comparison between our mismatch rejection methods and Hough clustering for non-rigid deformation. The lines

represent the feature correspondences that were grouped together by the respective method between the test image on the

bottom, and the model image on the top. The first row shows the results where the parameters of each method were set to be

extremely tolerant to mismatches, while the second row shows the results where the parameters were set such that the group

formed had the highest number of correspondences without any visible mismatch.

2) Non-rigid Deformation: Two comparisons are presented in Figures 7-8, where, for the

pairwise clustering and Hough transform, only the group that clustered the highest number of

features is shown in each case. Note that for the case of the semi-local feature only one group

per correspondence set can be formed, and this is the group shown in the experiments. Fig. 7

shows the results of our mismatch rejection methods proposed here and of Hough transform

where the model is an object composed of a string built with soda cans. For each method, two

results are shown. In the first row, the parameters of each method are set to be extremely tolerant

to mismatches, while the second row depicts the case where each method produces the largest

correspondence set without any visually detectable mismatch. Notice that the Hough transform

only matches a piece of the object that suffered a deformation close to a rigid transformation

when its parameters are set to be robust to mismatches, while our methods tend to be more

robust to non-rigid deformations even when they are very resistant to mismatches.

Finally, in the experiments above the number of operations carried out by the pairwise grouping

and the semi-local feature algorithms is around
�"	 �

, while that of the Hough transform varies

between
�"	 �

and
�"	��

.

3) Discussion: Although both methods are shown to be effective at reducing the mismatches

in correspondence sets, each one has advantages and disadvantages. The grouping based on
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Pairwise Clustering Semi-local Feature Hough Transform

Fig. 8. Second comparison between our mismatch rejection algorithms and Hough transform. Please refer to the caption of

Fig. 7 for details.

pairwise relations shows a slightly higher robustness to non-rigid deformations, but it needs

neighboring model points to be neighbors in the test image, which means that a large gap of

neighboring matches in the correspondence set can potentially break the initial group into sub-

groups. One advantage of the semi-local method is its high robustness to mismatches in the

correspondence sets as depicted in Fig. 6 Another advantage of the semi-local feature is in

terms of efficiency, where the computation of the shape feature can be performed in parallel to

that of the local feature after the location and orientation of the interest points are determined,

but the fact that it can form only one group per model may represent a problem in recognition

tasks involving the detection of several instances of a model in a test image.

V. GEOMETRIC PREDICTIONS

The mismatch rejection methods presented in Sections IV-A and IV-B can be made arbitrarily

robust to mismatches by varying the threshold
&

CCA in (4) and
& �

in (6). Generally, it is desirable

to be tolerant at this stage, and let the next stages in the system do the fine tuning by rejecting

mismatches that remained in the correspondence set. The main reason for letting the system

accept a few mismatches at this first stage is to make it less prone to false negatives. Moreover,

once we a have a correspondence set relatively free of mismatches, the system has to determine

whether this set represents an instance of a model. Therefore, the geometric predictions that we

present now have two objectives: a) further reject mismatches from the correspondences set, and

b) provide a measure of likelihood of model presence in the correspondence set.

Consider again the set of correspondences
� � � defined in (1) between model features � �
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and test image features � � . The idea is to predict �� � , �� � , and �� � for each test image feature�� � - ��� that has a correspondence in
� ��� , and compare those predicted values with the actual

values of the feature
�� � . This comparison is then used to measure the likelihood of the presence

of
�� � assuming the model presence. In general, note that the following relations are true if the

correspondence is correct:
�� D � 8  �� � � �� 81& *����� � �$��

, where �� � 8 � ���� � ����� ���� ���� � � 	������ �! � 8 * ��� � ! � $�	
���� � ������ � * �������
	� 	 � (8)

Let us consider the position prediction first. Assuming that the observed position �� � is affected

by additive Gaussian noise, we have

) � $�? � �� D � 8 �� ���3) � $�? �	���� � �$�� + ) � $�? � �� D � 8 �� 8 + ) � $�? ��
��  �*��	��*$�& (9)

for all  �*$"	#��98"& - � ��� �  � �
	����� & , where

��  � & is a Gaussian noise with zero mean and variance� 8�  �*��	�� $3& , which is defined later in Section VI-B. Here,

) � $�? � � � ����� � � 	�� �  � 	��� ��   is the pairwise weight,

meaning that neighboring points to
� �

within a range of roughly
��� ? �

pixels have a higher weight

in predicting the position of the test feature
����

than neighboring points that are farther away. We

set the value of
� � ? �

as a fraction of the model diameter in pixels. Equation 9 can be re-written

as ��� D �� � � ��� + � � � 	 (10)

where

� -�� 8�� � �$7
is a matrix with the vectors �� � 8 -�� 8���7 in its columns with � being the

number of correspondences in
� ��� ,

� -�� � �$7�� � �$7
is a diagonal matrix with the values

) � $�? �
for all

1��� /
,

� -�� � �$7���7
with

� ������$� �$�� + � D � $ �� 8 for all
1��� /

, and � � -�� � �$7���7
is the

vector with the Gaussian noise mentioned above. From (10), we have

�� � �! 
� +� � � 	 (11)

where
 �  

�"��� D & �$7 �#�
. Note that we do not know the specific values of


$�  � & , but only

their distribution, so we approximate the position �� � by the following prediction (see Fig. 9):

�� �� �!% � �& � � �! 
� �

(12)

In order to compute the similarity between the observed position �� � and its prediction �� �� , we

have to compute the position covariance, as follows:

H'�  ���� & �(% �  �� ���)% � �� � � &  �� ���)% � �� � � & D � �*% �+ � � � D �  D � �! diag  � 8�  �*��	��*$�&�&, D 	 (13)
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Fig. 9. Example of position prediction. Given the set of model features � � ��� ����� 4  �  �  �	� , suppose we want to estimate the

position of test image feature 
� � . The probable location of the feature (represented by a dotted ellipsoid in the Figure) is based

on a Gaussian distribution computed using the position of the correspondences in the test and model images and the pairwise

variances � ��� � ��� � 	�� estimated in the learning stage.

where
� 8�  �*��	��*$�& is assumed to be independent for all

1 �� /
. Finally, the similarity between �� �

and �� �� is computed as �  �� � � �� �� F�H'�  ���� &�& , where �  � & is the normalized zero mean Gaussian

function.

Following the same reasoning, the The similarity between
����

and
��)��

is defined as �  ���� ��� �� F�� 8�  ���� &�& , with �  � & is, again, the normalized zero mean Gaussian function, and
� 8�  ���� & �

� 7� 	��� � � � 	  
� 8 ��� $��� � ) 8� $�? � � 8�  � �
	��*$3& � , where

� 8�  �*� 	��*$�& is defined in Sec. VI-B. Finally, the sim-

ilarity between �� � and �� �� is computed as �  �� � � �� �� F�� 8�  ���� &�& , with �  � & is the normalized zero

mean Gaussian function, and
� 8�  ���� & � � 7� 	��� � � � 	  

� 8 � � $��� � ) 8� $�? � � 8�  �*��	��*$3& � , where
� 8�  �*��	��*$�& is

also defined in Sec. VI-B.

Therefore, the similarity between the predicted and observed position, main orientation, and

scale is computed in just one step as follows:

F  �*��	 ���� & � �  � �� � 	 ���� 	 �� � � � � �� �� 	 �� �� 	 �� �� �:F,H � &1	 (14)

where �  � & is the normalized Gaussian function with zero mean, and
H � � diag  H'�  ���� &3	�� 8�  ���� &1	�� 8�  ���� &�& .

The likelihood of the correspondence between
� �

and
����

represented by F� � & in (14) is used for

two goals. The first is to form the final set of correspondences by thresholding F  � & and forming

the following set:
�L @  � ��� & � (  �*��	#���� &�+  � �
	����� & - L @  � ��� &3	 F  � �
	����� & $ & � 2 1. The second goal is

to use the value provided by F  � & to determine the likelihood of the correspondence between
���

1Notice that we intentionally gave the same name for the sets of hypotheses to be verified 
� � ���!  � built from both mismatch

rejection methods (i.e., semi-local features and grouping based on pairwise relations).
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Fig. 10. Percentage of correct matches versus correspondence set after geometric prediction. This graph represents an extension

of the graphs in Fig. 5 where, here, the geometric prediction filters out mismatches from the group formed by the respective

mismatch rejection method. Note that the vertical scale is slightly different from that of Fig. 5.

and
����

. The time complexity of this algorithm is, like the mismatch rejection methods above,

O  + � ��� + 8 & , so it does not deteriorate the complexity of the system.

A. Performance Evaluation

In this section we demonstrate the efficacy of the geometric prediction algorithm for the task

of rejecting remaining mismatches left by the mismatch rejection methods presented in Sec. IV.

The geometric prediction has two parameters to set. The first is the weight that a feature
��$

has in predicting the position, orientation, and scale of a feature
���

. We use
) � $�? ��� � 2	��
 � � � 	�� �  � 	 �� ��   ,

where we set
��� ? ��� � �7 � . The other parameter is the correct match threshold

&��
, which is set at�"	 �$7 �

.

1) Rigid Deformation: The experimental setup introduced in Sec. IV-C.1 is used here and we

show the results in the final correspondence set after the geometric prediction rejected remaining

outliers from the groups formed by both mismatch rejection methods. Fig. 10 shows the inlier

percentage versus correspondence set size for the respective graphs of Fig. 5. Note that the

main difference is that the inlier percentage rarely falls below
, 	&-

to
, % -

even for large

correspondence sets. Also, Fig. 11 illustrates the consistent robustness of geometric prediction

combined with the mismatch rejection methods to extremely high percentage of mismatches in

the initial correspondence set. Even in cases with less than
�"	 -

of initial correct matches, both

methods return a final correspondence set with generally more than
,�	&-

of inliers.

2) Non-rigid Deformation: We extend the experiment presented in Section IV-C.2, where the

geometric prediction is used to reject the mismatches from the groups built by both mismatch
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Fig. 11. Quantitative comparisons that shows the proportion of correct matches as a function of the percentage of inliers

present in the initial correspondence set. This graph represents an extension of the graphs in Fig. 6 where, here, the geometric

prediction filters out mismatches from the group formed by the respective mismatch rejection method.

Pairwise Clustering + Geometric Prediction Semi-local Feature + Geometric Prediction

Fig. 12. Correspondence set after the geometric prediction method filtered out the mismatches present in the groups of Fig. 7.

rejection methods. Fig. 12 shows the results from the geometric prediction on the groups of Fig.

7, while Fig. 13 presents the final correspondence sets from Fig. 8.

VI. PROBABILISTIC FORMULATION FOR VERIFICATION

In this section, we introduce the probabilistic formulation for the hypothesis verification stage,

which is based on [31], but we make somewhat less restrictive assumptions that may improve

the verification performance.

The problem of constructing a probabilistic method for the verification of hypotheses has

been intensively studied lately. Similar probabilistic verification methods to recognize limited

categories of objects are presented in [1], [2], [15], [16], [43], where the systems generally work

with a small set of parts (substantially fewer than 100 parts). It is worth noting that among the
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Pairwise Clustering + Geometric Prediction Semi-local Feature + Geometric Prediction

Fig. 13. Correspondence set after the geometric prediction algorithm filtered out the remaining mismatches present in the

groups of Fig. 8.

papers cited before, only the work described in [1] uses a flexible spatial coherence based on

pairwise relations for the verification. Systems more closely related to ours are described in [26],

[31], [34]. Lowe [26] relies on a probabilistic verification that takes into account the global shape

of the model and information about the distinctiveness of the model as a whole. Schmid [34]

describes a probabilistic verification that uses semi-local coherence, where a learning approach

to estimate the feature appearance variation is described. However, it is likely that this system

suffers from the presence of mismatches in large hypothesis sets.

In order to assess the hypothesis that a particular object is present in a test image, we propose a

probabilistic formulation framework that involves the feature correspondences and the semi-local

spatial configuration similarities. Assuming that � � represents the hypothesis that an instance

of the model
�

is present in the test image, � is a set of correspondences, and � represents the

global geometric configuration of features (i.e., their position
�

, scale
�

, and main orientation�
). We define the posterior �  ,��� + � 	 � & as (using the Bayes rule):

�  ,��� + � 	 � & � �  �� + � 	 � � & �  �� + ��� & �  ,� � &� � � �  ? � �  �  �� + � 	 � & �  �� + � & �  ,� &
�

(15)

In [31], three assumptions are made:

1) �  �� 	 � & � �  �� & �  �� & , i.e., the correspondences are independent of their global geometrical

configuration;

2) �  �� + � � & � �  �� & , which means that the global configuration is conditionally independent

of the hypothesized model; and

3)
� �	��
 D ? �  �� ���.� �� B � �	� � 
 D ? �  �� ��� � � , where

� B ’s are the individual elements of set � .
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On the other hand, we have the following two assumptions:

1) �  �� + � � & � �  �� +�� � � & � �  �� & , or the global geometrical configuration can be assumed

to be conditionally independent of the hypothesized model; and

2) �  �� + � 	 � � & �  B �  � B + � 	 � � & .
Our first assumption above is necessary to remove the global spatial configuration of features

from the posterior calculation, which is straightforward from the mismatch rejection methods

proposed. Even though we know that our second assumption is unrealistic, it is necessary since

the estimation of the joint probability �  �� + � 	 � � & would require an extremely large number of

training cases.

A. Probabilistic Correspondences Based on Feature Similarity

Using the image deformations of Appendix II and the database of random features of Appendix

I, it is possible to determine three properties of each model feature
��� - � � (please refer

to [11] for more details): a) the probability distribution of feature similarities given a correct

correspondence � on   !  � &,F��*� & , b) the probability distribution of feature similarities given a false

correspondence � off   "!  � & F��*� & , and c) the probability of feature detection � det  � � & . Using these

properties we compute the probabilistic correspondence, as explained later in Sec. VI-C.

B. Probabilistic Correspondences based on Semi-local Geometry

The likelihood terms �  � B + � 	 � � & and �  � B + � 	�� ��� & of each correspondence
� B in � also

involves feature value and semi-local geometric similarity. Since we assume that the pairwise

relations are affected by a zero-mean Gaussian noise (see Sec. V), only the variance of each

pairwise relation in the model needs to be learned. Ideally, these variances should be estimated

from real images of the same object, but that would require strong supervision in order to

determine the locations of each model feature in each training image. Instead of that, we resorted

to a simpler training procedure, where we use a single training image and artificially deform

it (see deformations in Appendix II), so that the exact position of each model feature can be

computed precisely. Let � � represent the model features from model image ��� , and
�� � ? = be

the features detected from the deformed version of image ��� , namely
��"� ? = , using a deformation

. - �0/ . The correspondence set between these two sets is given by

� � ? = � (  �*��	#���� &�+ ���� - � � ? = 	 � �� �����  . & �� �
�
 . & � ��� 	��*� - �  ���� 	 � � 	���� &32 	
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Fig. 14. Block diagrams of the learning and recognition procedures.

where
�

, defined in (1), is the top
� �

correspondences (here,
� � � �

),
�

was fixed at
���
�
� � � 	

pixels (as measured in the image
��1� ? = ), �� is the position of feature

�,�
, �� � is the position of

feature
����

, and the transformation parameters
�  �. & and

�
 �. & are obtained from the deformation

. - �0/ . Assuming that the uncertainties of the pairwise relations are normally distributed, we

have � 8�  � �
	��*$�& ����� 
  ( �C��� $  � � ? = &�2 =	� ��
 &1	� 8�  �*��	��*$3& ����� 
  ( � � � $  � � ? = &�2 =	� ��
 &1	 and� 8�  �*��	��*$3& ���� 
  ( � � � $  � � ? = &32 =�� ��
.&1	
(16)

for all deformations . - �0/ , where
��� 


is the sample variance of the values in the set, and

the pairwise relations between an object and its deformed version are provided by
�C� � $  � � ? = & ,� � � $  � � ? = & , and

� � � $  � � ? = & (see Eq. 3). Therefore, for the term �  � B + � 	 ��� & , the idea is to use

the geometric predictions defined in Sec. V to determine the likelihood of the correspondence
� B ,

and for �  � B + � 	�� ��� & , we simply assume a uniform distribution of the geometric configuration

error.

C. Final Verification

Given a model ��� , learned using the algorithm described above (see block diagram (a) in

Fig. 14), the model presence in a test image ��� is determined as follows (see block diagram

(b) in Fig. 14). First, build the set of local features � � from � � , then search for similar local

features in the database of models, thus forming the
� ��� (1). Note that each test image feature is

matched to
� �

model features and that it is possible that a model feature is matched to more than

one test feature. We handle this kind of multiple correspondences originating from one feature
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in the model image by representing them as separate entities in the correspondence set. Given

these correspondences, the mismatch rejection step forms a set of K clusters
( �L @  � � &32 �@�� 7 (see

Sections IV-A and IV-B.1). Each cluster is a hypothesis that a particular object is present in the

image, so our goal is to determine if any of the clusters
�L @  � � & actually represents an instance

of the object � � . Let us first define the set of pairings for all model features
� � - � � from

group
�L @  � � & , as � @ � �L @  � � & � (  � �
	�� &�+ � � - � � 	 ��� ���� - ��� s.t.  �*��	����� & - �L @  � � &32 . Therefore,

we compute the posterior (15) as follows:

1) �  *� � & is the prior expectation of model presence, and �  � � � & � �J� �  ,� � & (here, we

assume that �  *��� & � 	 � 	�	 �
).

2) �  �� @ + � 	 � � &+*  ��� � ? �� �B� � � � �  � �*��	������&�+ � 	 � � & , where we have the following two cases:

a) �  � �*� 	�� & - � @ + � 	 � � & *  �G� � det  �� &�& + � det  �� & � on   "! � &�( F�� � &
, where

&�(
is the

threshold in (1), and � det  �*� & and � on  � & are defined in Sec. VI-A. The intuition is

that if the model feature is not matched to a test feature, either it was not detected

(first term of the sum), or it was detected, but not included in the correspondence set

(second term);

b) �  � �*� 	#���� & - � @ + � 	 � � & * � det  �*� & � on   "!  �*��	����� & F��*� & F  �*��	����� & , where F  � & is defined in (14).

Here, we consider that for  �,��	#���� & - � @ , the feature has to be detected in the test image

(first term of the multiplication), with a certain similarity value (second term), and

geometric configuration (third term).

3) �  �� @ + � 	 � � � & �  ��� � ? �� � � � � � �  � �*��	������&�+ � 	�� ��� & , where we have the following two cases:

a) �  � �*� 	�� &�- � @ + � 	�� ��� & *  � �'	 � 	 9 � & + 	 � 	 9 �  � off   "! � &�(,F��*� &�&
, where the number	 � 	 9 � represents the average number of interest points per test image divided by the

size of the image (see [8]), and � off  � & is defined in Sec. VI-A. Similarly to the case

above, the likelihood of having an unmatched model feature assuming that the model

is not present is approximated by the probability of general detection failure (first

term) plus the likelihood of detection times the likelihood of not including the match

in � @ ;
b) �  � �*� 	#���� & - � @ + � 	 � � � & *  	 � 	 9 � & � off   "!  ���� 	��*� & F�� � & 7( B�� �%�
	 � 7� 78 � . In the last term, we as-

sume uniform distribution of position, main orientation, and scale given a background

feature. The intuition is that the likelihood of matching a model to a test feature in
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this case is related to the general feature detection, high similarity to false positive

matches, and arbitrary geometric configuration.

Finally, we accept a hypothesis if �  *� � + � @�	 � & is above a probability value, the number of

correctly predicted matches (using Eq. 14) is above a threshold, and the maximum distance

between test image features is bigger than a threshold , i.e., assuming �� � and �� 8 are the

positions of test image features
����

and
��:8

, respectively, with  �,��	 ���� &3	  �*$"	 ��981&0- � @ , we require
? 4ED��"� ? $ � ����� ����	
� ������ � �	�� $ & �

(this is done to avoid a large number of features all in a small area of

the image).

VII. EXPERIMENTS

In this section we show the qualitative and quantitative performance of our recognition algo-

rithm using the phase-based feature [8], both mismatch rejection methods, and the probabilistic

verification. The following tasks are considered: a) wide baseline stereo matching, and b)

long range motion matching. The main difference between the wide baseline stereo and long

range motion experiments is that the former always involves the computation of the epipolar

geometry given a pair of images presenting a significant 3-D rigid transformation, while the

latter concerns matching pairs of images that might have suffered not only 3-D rigid but also

non-rigid deformations.

A. Recognition Parameters

Referring to the block diagram (b) of Fig. 14, the search for similar features (see Eq. 1) in

the model database involves the following two parameters: a) phase correlation threshold (here,&�( � 	 �(')%
), and the maximum number of nearest neighbors (

�,� � �
). The following step is

the mismatch rejection based either on the pairwise clustering or the semi-local feature. The

parameters used for the mismatch rejection methods are the same as described in Section IV-C,

where
&

CCA
� 	 � �

for the pairwise grouping method (see Eq. 4), and
& � � 	 �$%

for the semi-

local feature (see Eq. 6). The acceptance of a hypothesis is evaluated in the verification step,

which depends upon: the posterior �  ,� � + � @�	 � & $ 	 �(%
, the maximum distance between test

image features being at least
� 	 -

of the maximum model diameter in pixels, and the number of

correctly predicted matches being at least 9 - of the total number of features of the model. The
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Torso Kevin Dudek Hedvig Snake of Cans Michelle [17]

Fig. 15. Models used for long range motion. All the models are represented only by the features inside the contour around

the object of interest.

parameters above are found to provide a good balance between robustness to image deformations

and to false positives, and they are kept fixed throughout the experiments below.

B. Long Range Motion Results

The long range motion application is likely to be the most appropriate application for the sys-

tem presented in this work. In fact, any task that involves the recognition and rough localization of

textured objects that suffered severe 3-D rigid and non-rigid deformations (including articulation)

is well suited for this system. In this section the model (see Fig. 15) is always represented by

only one view of the object, and the system tries to find it throughout the sequence. We also

provide a comparison using Hough transform as a baseline method for eliminating mismatches

in combination with the verification stage based on geometric prediction.

The sequences of the Torso, Hedvig, Kevin, and Dudek models (see samples in Fig. 16) are

quite challenging due to the presence of non-rigid, brightness, 3-D rigid transformations, and

partial occlusion. Fig. 16 shows the verification results using either the pairwise grouping or

the semi-local feature methods to reject mismatches. Although we only show the most severely

deformed samples in each sequence, it is interesting to see the quantitative performance of this

system in each sequence shown in Table I. We do not show the number of true negatives since

that number would be related to all possible data associations between the set of model and test

features, which is equal to
+ ��� + 
 �  
 , where both

+ ��� + and
+ ��� + are in the order of

�"	��
. Also in

this table we show the performance of the system using Hough transform to reject mismatches

followed by the geometric prediction in the verification stage.

The snake of cans in Fig. 17 represents another challenging set of images that shows the

articulated object in several different poses. Illumination changes are also present due to the
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Pairwise grouping Semi-local features Pairwise grouping Semi-local features

a) Torso sequence b) Hedvig sequence

Pairwise grouping Semi-local features Pairwise grouping Semi-local features

c) Kevin sequence d) Dudek sequence

Fig. 16. Matchings for the Torso, Hedvig, Kevin, and Dudek models. First and third columns show the verification results using

pairwise grouping for rejecting mismatches, and second and fourth columns use the phase-based semi-local features. White lines

are the correspondences between model and test images after verification.

TABLE I

PERFORMANCE OF THE RECOGNITION ALGORITHM IN EACH SEQUENCE.

Sequence Length True positives False positives False negatives

Pairwise Semi-local Hough Pairwise Semi-local Hough Pairwise Semi-local Hough

Dudek 140 138 130 105 0 0 9 2 10 35

Kevin 120 120 109 111 0 0 12 0 11 9

Hedvig 33 30 31 28 0 0 1 3 2 5

Torso 148 148 147 148 0 0 8 0 1 0
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Pairwise grouping Semi-local feature Hough Transform

Fig. 17. Matchings for snake of cans model.

highlights in the metal cans. Notice that both methods are quite robust in terms of articulate

deformations. In contrast, Hough transform provides a poorer performance in these cases.

Finally, Fig. 18 shows the most challenging cases (in terms of non-rigid deformation) from

the database of images designed by Ferrari et al. [17]. In general the pairwise grouping and local

features are more robust to non-rigid deformations than the Hough transform, and consequently

tend to include more correct matches in the final correspondence set. The running time for the

tasks of searching for correspondences, mismatch rejection, and verification varies between five

to ten seconds in non-optimized Matlab code for all the cases presented in this section.

C. Wide Baseline Stereo Results

A wide baseline stereo problem involves two images where a significant 3-D rigid transfor-

mation took place between them, and the goal is to reliably compute their epipolar geometry.

In order to robustly compute this epipolar geometry, we need a reasonably large number of

matches situated on different planes of the scene. Using the same experimental setup introduced

in Sec. IV-C.1, we focus on the computation of the � matrix and also on the number of trials
�

necessary to make the probability of choosing at least one outlier in every trial of the RANSAC
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Pairwise grouping Semi-local feature Hough Transform

Fig. 18. Matchings for the michelle model [17].

algorithm smaller than
%)-

. We assume that the percentage of inliers is F ��� ����� � � B��B�� � $ � � , where��
is the number of inliers in the set and

1�� �
the number of outliers, and that the matrix � has

seven degrees of freedom. Using eight point correspondences to estimate F, the probability of

finding at least one mismatch in a randomly selected subset of eight correspondences from the

initial set is F � ���,$��'� � � F ���� ����� � . As a result, the number of trials
�

to make the probability of

choosing at least one outlier in every trial of the RANSAC algorithm smaller than
% -

is defined

as F � � ���,$��	� 	 � 	 %
, so

�
can be determined by

� ��
 � 8� � � ��� �C�%�� 8� � � ������� 	 � �� .

Figures 19 and 20 show the wide baseline stereo pairs for the Merton and Wadham sequences.

Notice that both outlier rejection methods return a correspondence set with a high percentage of

inliers, which is between
, 9 - and

, ,&-
. This large proportion of true correspondences is likely

to reduce the complexity of the algorithm to compute the � matrix. The average running time

for the tasks of searching for correspondences, mismatch rejection, and verification is around

ten seconds in non-optimized Matlab code.
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Pairwise grouping Semi-local feature

�
inliers ����� � , � inliers=628, �	��
 �

inliers ���� � , � inliers=629, �	��


�
inliers ����� � , � inliers=336, �	��
 �

inliers ����� � , � inliers=328, �	��


Fig. 19. Epipolar geometry for Merton sequence. In the caption we show the proportion of correct matches given the � matrix

computed (’ 
 correct matches’). Also, ’ � correct matches’ shows the total number of correct matches used, and ’t’ is the

number of trials necessary to make the probability ��� �	� � � of choosing at least 1 mismatch in every trial of the RANSAC

algorithm.

VIII. CONCLUSIONS

The use of spatial configuration of local features aims at reducing the number of mismatches in

the correspondence set. This is desirable in order to decrease the complexity of the verification

stage and to reduce the likelihood of false positives and false negatives. We proposed two

methods to reject mismatches based on semi-local spatial information and another method to

reject mismatches and to verify hypotheses based on the prediction of the geometric information

of local features. We presented comparisons between our methods and Hough clustering, which

is a common mismatch rejection method based on global spatial configuration of features, and

the results show that our approaches are more robust to rigid transformations and non-rigid

deformations. Also, our mismatch rejection methods are shown to have a time complexity roughly

similar to that of Hough transform. We also propose a new probabilistic verification that takes

into account the semi-local spatial configuration of each feature and the feature similarity. Results

on long range matching and wide baseline stereo matching show the efficacy of the proposed

method.
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Pairwise grouping Semi-local feature

�
inliers ����
 � , # inliers=296, � � � �

inliers ����� � , # inliers=284, �	��


�
inliers ����� � , # inliers=262, � ��� �

inliers ����� � , # inliers=338, �	���

Fig. 20. Epipolar geometry for Wadham sequence. See Fig. 19 for details on the captions.
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